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ABSTRACT

Accurate and timely information on soil moisture conditions is an important component to effectively

prepare for the damaging aspects of hydrological extremes. The combination of sparsely dense in situ net-

works and shallow observation depths of remotely sensed soil moisture conditions often force local and

regional decision-makers to rely on numerical methods when assessing the current soil state. In this study, soil

moisture from a commonly used, high-resolution reanalysis dataset is compared to observations from theU.S.

Climate Reference Network (USCRN). The purpose of this study is to evaluate howwell theNorthAmerican

Regional Reanalysis (NARR) captured the evolution, intensity, and spatial extent of the 2012 drought using

both raw volumetric values and standardized anomalies of soil moisture. Comparisons revealed that despite a

dry precipitation bias of 22% nationally, NARR had predominantly wetter 5-cm volumetric soil conditions

over the growing season (April–September) than observed at USCRN sites across the contiguous United

States, with differences more pronounced in drier regions. These biases were partially attributed to differ-

ences between the dominant soil characteristics assigned to the modeled grid cells and localized soil char-

acteristics at theUSCRN stations. However, NARRwas able to successfully capturemany aspects of the 2012

drought, including the timing, intensity, and spatial extent when using standardized soil moisture anomalies.

Standardizing soil moisture conditions reduced the magnitude of systematic biases between NARR and

USCRN inmany regions and provided amore robust basis for utilizingmodeled soil conditions in assessments

of hydrological extremes.

1. Introduction

Soil conditions are a critical component of the mois-

ture and energy transfers that impact weather and cli-

mate systems through local, regional, and global

feedbacks (Legates et al. 2011; Seneviratne et al. 2010).

The influence of this feedback is particularly evident

during extreme hydrological dry events, such as

droughts. While atmospheric circulations and interan-

nual variability (i.e., El Niño and La Niña) have been

found to influence the onset and prolong drought condi-

tions (Trenberth and Guillemot 1996), once drought has

been established the availability of soil moisture for

evapotranspiration will reduce over time, resulting in

surfacewarming as the soil dries (Seneviratne et al. 2010).

The increased warming leads to further drying, creating a

positive feedback that reinforces and often intensifies

drought conditions (AghaKouchak et al. 2014; Trenberth

et al. 2013).Karl et al. (2012) attributed the severity of the

2012 drought, which resulted in an estimated $31.5 billion

in damages and 123 related deaths (Smith et al. 2016), in

part to this temperature-reinforcing feedback. In addi-

tion, the impacts of hydrological extreme events are still
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felt following the recovery, with lingering effects on

commodity prices and elevated societal risks (e.g., forest

fires, poor water quality, health impacts, and temperature

extremes) in the years and months that follow. To miti-

gate agricultural and societal impacts to future events,

timely and accurate data on soil conditions are necessary

for forecasters, local decision-makers, and others assess-

ing the severity of and managing societal risks to hydro-

logical extremes (Sheffield et al. 2004).

Despite the importanceof soilmoisture data, high-quality

in situ observations and remotely sensed soil conditions are

often limited spatially or have short observational records

(Seneviratne et al. 2010; Sheffield et al. 2004). For in situ

measurements, this is further complicated by a lack of

consistent instrumentation type (e.g., gravimetric, neu-

tron probes, heat dissipation sensors, time, and frequency

domain reflectometry), reporting depths, and calibration

methods used among the available in situ networks.

These differences make it challenging to combine ob-

servations from multiple networks (Ford et al. 2015;

Robock et al. 2000); however, attempts tomergemultiple

soil monitoring networks are underway for weather and

climate modeling purposes both in the United States

(Quiring et al. 2016) and globally (Dorigo et al. 2011).

Methods to monitor soil conditions directly through

satellite remote sensing are generally limited to the first

few centimeters of the soil column, and the utility of these

observations is impacted by vegetation density, atmo-

spheric transparency, and processing algorithms

(Seneviratne et al. 2010). Some general purpose satellite

instruments have been used to estimate soil moisture,

including passive microwave systems such as the Ad-

vanced Microwave Scanning Radiometer for Earth Ob-

serving System (AMSR-E) and activemicrowave systems

such as the Advanced Scatterometer (ASCAT; Ochsner

et al. 2013). The first dedicated satellite for measuring soil

moisture using the more moisture-sensitive L-band of

microwave emissions was the ESA Soil Moisture Ocean

Salinity (SMOS) mission, which achieved good results in

test watersheds (Jackson et al. 2012) but tended to have

difficulties with radio frequency interference and a dry

bias in some regions (Ochsner et al. 2013). The NASA

Soil Moisture Active Passive (SMAP) mission satellite

has proven to be quite successful in recent comparisons

with in situ calibration sites, achieving a 0.038m3m23

unbiased root-mean-square difference in estimating vol-

umetric soil moisture over 36-km2 cells (Chan et al. 2016).

However, these results are strongly impacted by vegeta-

tion density since vegetation also emits L-band radiation

from water in the plants, which impact soil moisture es-

timates. While microwave remote sensing can provide

surface state inputs for modeling deeper layers of soil

moisture, only the critical information captured by in situ

networks can be used to verify these models or estimate

vegetation health and its feedbacks on the atmosphere

(i.e., evapotranspiration rates, roughness length, and al-

bedo; Legates et al. 2011; McPherson 2007). Further-

more, it is challenging to estimate deeper soil conditions

from the top layer, as soil moisture conditions at deeper

depths do not always temporally align well with the upper

layers (Bell et al. 2015; Ford et al. 2014).Given the lack of

spatially dense soil monitoring networks and limitation of

remotely sensed products, current evaluations of soil

conditions used in many applications often rely upon

numerical modeling methods to provide temporally and

spatially continuous soil moisture estimates (Sheffield

et al. 2004).

Model simulations of soil conditions by necessity use

simplified representations of complex hydrological pro-

cesses such as lateral flow over topography, infiltration,

gravity percolation, evapotranspiration, and interactions

with the water table, among others, potentially in-

troducing biases and/or range limits in simulated soil

moisture results. These factors are further compounded

by the spatially heterogeneous vegetation type, canopy

density, and soil characteristics over the model grid,

which must be represented as one or several dominant

soil and vegetation types (Xia et al. 2015a) within the land

surface model (LSM). LSMs simulate these hydrological

processes in addition to radiative, heat, and moisture

transfers between the land and atmosphere. There are a

number of LSMs, each developed with its own purpose

and set of governing equations (Koster et al. 2009), which

can result in a range of estimated soil conditions with the

same atmospheric forcing. Moreover, the choice of

the LSMand how it interacts (coupled or offline) with the

atmospheric model may also result in some additional

model uncertainty (Fan et al. 2011; Koster et al. 2009).

Despite the variety of potential error sources for simu-

lated soil conditions, many of these biases should remain

consistent throughout a model run. Therefore, a stable

model may produce relative soil moisture changes over

time that parallel the seasonal evolution of observed soil

moisture conditions (Koster et al. 2009) and possibly

capture the evolution of hydrological extremes (drought

and saturation; Mesinger et al. 2006).

In this study, simulated soil conditions from the North

American Regional Reanalysis (NARR) will be com-

pared with in situ measurements from the U.S. Climate

Reference Network (USCRN) over the 2012 drought,

which is one of the most widespread droughts in recent

American history (Hoerling et al. 2014). The purpose of

this study is to investigate the ability of a widely used and

available reanalysis model to simulate soil moisture

extremes during drought. The performance of NARR

will be evaluated from both absolute and relative
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perspectives, focusing on its ability to simulate soil

moisture trends, intensity, and the spatial extent of the

2012 drought. It is anticipated that the NARR may not

model absolute quantities of volumetric soil moisture

well in some circumstances, as noted byXia et al. (2015a,b),

but may resolve the time evolution, intensity, and spatial

extent of soil moisture changes during the 2012 drought,

making it a useful tool for local and regional decision-

makers to monitor ongoing and future hydrological ex-

tremes with a historical context.

2. Data description

a. NARR

NARR is amodel product from theNational Centers for

Environmental Prediction (NCEP) that simulates histori-

cal (1979) to present atmospheric and soil conditions

(Mesinger et al. 2006). The model assimilates a variety of

available observational datasets to improve model perfor-

mance, including ground-based, dropsonde, rawinsonde,

aircraft, satellite, and ship data, but does not assimilate

in situ soil data. NARRdoes assimilate gauge precipitation

data; this is accomplished indirectly by altering the latent

energy profile, which has been found to improve the sim-

ulation of precipitation over other reanalyses (Mesinger

et al. 2006; Nigam and Ruiz-Barradas 2006). However,

Nigam and Ruiz-Barradas (2006) and Dominguez and

Kumar (2008) note that the assimilation process for pre-

cipitation can create imbalances between the atmosphere

and land surface model, impacting modeled evaporation

and soil moisture. The impacts of the assimilation process

should be taken into consideration when evaluating the

performance of NARRwith respect to in situ data. NARR

products are available at a 3-h frequency over a 32-km

resolution grid that covers North America with 45 levels in

the vertical. Soil conditions (temperature andmoisture) are

simulated using a coupled Noah1 LSM, which simulates

land–atmosphere interactions (surface evaporation, en-

ergy) and soil conditions. The Noah LSMuses the Penman

approach to approximate potential evaporation from a

single canopy model and at the midpoint of four layers

within the soil columns at depths of 5, 25, 70, and 150cm

(Chen and Dudhia 2001; Mitchell 2005).

b. USCRN

TheUSCRN is a climatemonitoring network providing

observations of surface (temperature, precipitation, wind

speed, relative humidity, solar radiation, and surface

inferred temperature) and subsurface (soil moisture and

temperature) conditions from 114 stations in the contig-

uous United States (CONUS) at hourly to subhourly

temporal resolution (Diamond et al. 2013). The network

began monitoring soil conditions during the summer of

2009 with full deployment across the CONUS completed

in 2011 (Bell et al. 2013). Soil moisture and temperature

are observed nominally at five depths: 5, 10, 20, 50, and

100 cm. Three redundant sets of probes are installed at

three plots surrounding the station’s instrument tower

(within 2.0m), using the Stevens HydraProbe. This probe

is a coaxial impedance dielectric reflectometry sensor that

detects the real dielectric of the soil, which is converted to

volumetric soil moisture using the general loam equation

of Seyfried et al. (2005). For the deeper soil layers (20, 50,

and 100cm), the exact depth of each sensormay vary with

soil conditions. The lower-layer depths were installed

only where the soil was deep enough and had few rocks;

25 of the 114 stations do not have any soil probes below

10cm depth. The monitoring depths for each station are

available in the USCRN metadata system (https://www.

ncdc.noaa.gov/isis/stationlist?networkid51). Sensor re-

dundancy provides quality-control (QC) processes with

multiple observations from which to identify failing–

drifting sensors and reducing the number and length of

data gaps (backup sensors), which enhances the quality

and continuity of the soil climate record. In addition to

automated QC, soil observations are manually reviewed

at a monthly frequency to monitor sensor health and

identify suspicious observations missed by automated

QC. Soil data are stored as an hourly average of redun-

dant sensors for each layer, with 5-min values available

FIG. 1. Map of USCRN stations (blue triangles) and selected

nearest NARR grids (light blue circles) used in the comparison

study overlaid on the National Drought Monitor’s areas experi-

encing severe to exceptional drought conditions (orange) for 21

Aug 2012 and theNational Centers for Environmental Information

(NCEI) climate regions (bold outlines).

1 The Noah LSM is a community model developed in collabo-

ration with the National Centers for Environmental Prediction,

Oregon State University, Air Force, and Hydrologic Research

Laboratory (Noah).
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for the top 5-cm soil layer. For a more complete de-

scription of this dataset, see Bell et al. (2013).

3. Methodology

NARR and USCRN precipitation and soil moisture

conditions at the 5-cm depth were compared over the

2012 drought. The 5-cm depth was chosen to maximize

the number of locations available for comparison since

NARR lacked a 10-cm equivalent depth and only 89 of

the 114 USCRN stations reported at depths deeper than

10 cm. To resolve temporal differences between

USCRN (hourly) and NARR (3 hourly), station obser-

vations were resampled to the lower temporal resolution

by taking the hourly observation that corresponded to

NARR output times (0000, 0300, 0600, 0900, 1200, 1500,

1800, and 2100 UTC). For precipitation, USCRN hourly

data were summed over the 3-h periods that matched

NARRprecipitation aggregates. If any of the precipitation

or soil moisture observations from NARR or USCRN

weremissing, the variables frombothNARRandUSCRN

for this time period were omitted.

The NARR variables used for precipitation and 5-cm

soil moisture were the total precipitation (the sum

of microphysical and convective-based precipitation;

A_PCP_221_SFC_acc3h) and the top layer of the non-

frozen soil moisture variable (SOILL_221_DBLY). The

NARRdata used for the comparison with USCRNwere

taken from the model grid nearest to the corresponding

station based on the distance from the grid centroid

(Fig. 1). Only NARR grids where soil conditions were

modeled (i.e., over land surfaces) were considered in the

selection process, which resulted in an average grid-

centroid to USCRN station distance of 11.8 km. NARR

comparisons with USCRN were evaluated as NARR

minus USCRN and included the coefficient of de-

termination r2 and index of agreement D metrics to as-

sess goodness of fit described by Legates and McCabe

(1999). The D was developed by Willmott (1981) to

overcome limitations of r2 that can result in high cor-

relations despite sizable differences and as described in

Eq. (1), where O is observation, O is the observation

mean, P is the prediction, P is the prediction mean, and i

is the ith iteration over the total observations N:

D5 12
�
N

i51

(O
i
2P

i
)2

�
N

i51

(jP
i
2Oj1 jO

i
2Oj)2

. (1)

The comparison evaluated the evolution, intensity, and

spatial extent of the 2012 drought at the national,

FIG. 3. Scatterplot of USCRN and NARR first-order differences of

monthly national total precipitation.

FIG. 2. USCRN and NARR (a) scatter plot of nationally

averaged monthly precipitation and (b) time series of USCRN

(black) and NARR (blue) accumulated national total

precipitation.
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regional [climate regions defined by Karl and Koss

(1984)], and station levels.

NARR and USCRN were compared at each CONUS

station for the period from January 2011 (predrought) to

December 2013 (post drought) to cover the evolution of

the 2012 drought similar to Bell et al. (2015). In addition

to comparing volumetric soil moisture measurements,

standardized anomalies of USCRN andNARR soil data

were evaluated tomonitor soil moisture tendencies from

the mean. Soil moisture anomalies for NARR and

USCRNwere computed based upon the station’s period

of record (POR), 5–6 yr for most stations, to September

2014, which is the last date available from NARR at the

time. This was done to ensure NARR and USCRN

anomalies were computed over the same period for each

station.While national and regional variations in station

PORs may impact the spatial congruity of anomalies

among some neighboring stations, this will have little

impact on the analysis of NARR’s performance over the

2012 drought, which is the intent of this study. The

temporally aligned observations from USCRN and

NARR were smoothed using a 7-day moving window

with the mean computed at the center to lessen the

impact of brief spikes in sensor observations associated

with rain events. NARR and USCRN interannual

means and standard deviations were calculated over

each station’s POR and then smoothed with a 15-day

running mean in order to remove seasonal cycles.

Anomalies were then calculated by taking the original

7-day smoothed soil moisture values and subtracting

the 15-day smoothed POR mean time series; stan-

dardized anomalies were then generated by dividing

the anomalies by the POR standard deviation. Stan-

dardization of soil conditions lessens the impacts of

FIG. 4. Regional NARRminus USCRNmonthly precipitation from 2011 to 2013 for the (a) Northeast,

(b) Southeast, (c) upper Midwest, (d) Ohio Valley, (e) South, (f) northern Rockies and Great Plains,

(g) Southwest, (h) Northwest, and (i) West.
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location and peak-to-trough spread in the dataset as

described by Steinemann (2003).

While anomalies are traditionally computed using

base periods over a decade or longer, Quiring et al.

(2015) found that soil moisture measurements from a

small number of years (3–6 yr) provided a stable cu-

mulative distribution function similar to the 15-yr

dataset from which subsets were drawn. These results

suggest that shorter PORs are not necessarily an im-

pediment to evaluating soil moisture anomalies. In ad-

dition, the intent of the use of anomalies in this study

was to compare relative shifts in modeled and observed

soil conditions from themean rather than assessments of

hydroclimatic changes over time.

4. Results

a. Precipitation comparison

NARR simulated less gridcell precipitation than ob-

served at USCRN locations (Figs. 2a,b). This was par-

ticularly evident for wetter months (.300mm),

resulting in a U.S. monthly average dry bias for all sta-

tion locations of 14.9mm or222%. The dry bias may be

attributed to the inability of the model’s convective

scheme to simulate heavier intragridcell precipitation

rates. The model dry bias was nearly systematic and

persistent from 2011 to 2013 (Fig. 2b), but NARR and

USCRN did have similar month-to-month precipitation

first-order differences (Fig. 3). The similar temporal

patterns of monthly precipitation between USCRN and

NARR indicate NARR was able to capture both

reductions in monthly total precipitation leading

into drought and a recovery in 2013 similar to

USCRN, including a lack of precipitation in the

spring of 2012.

The NARR precipitation bias was also evident across

U.S. climate divisions (Figs. 4a–i). Mean precipitation

biases ranged between 25.5 and 225.8mm (216.7%

and229.0%), with some of the larger biases observed in

the eastern half of the United States, where conditions

are generally wetter (Table 1). The coefficient of de-

termination and the index of agreement, which ranged

between 0.59 and 0.90 and 0.83 and 0.96, respectively,

also showed generally higher levels of agreement for

western regions. The better agreement may be attrib-

uted to a strong positive NARR precipitation bias that

occurred between August and December 2013, which

eased the prior year’s (2011 and 2012) negative pre-

cipitation biases, shown in Figs. 4f–i. The larger con-

trasts in precipitation between NARR and USCRN

impacts these regions’ soil moisture comparisons dur-

ing the 2013 recovery year, as will be discussed below.

b. Soil moisture comparison

The soil moisture comparison was conducted using

only the warm season months from April to September,

so as to avoid frozen soil conditions. Despite a dry pre-

cipitation bias, NARR simulated wetter mean volu-

metric soil moisture conditions than observed at

USCRN locations by 0.05m3m23 nationally (Table 2).

Standardized anomalous soil moisture conditions would

produce amean of exactly zero if averaged over the base

period, but in this case, only a subset of months were

averaged, so the results deviate from zero. However,

NARR and USCRN mean standardized differences

were still very close to zero (Table 3), much more so

than in the case of their absolute soil moisture values. A

scatterplot of 5-cm volumetric soil moisture (Fig. 5a)

revealed that NARR tended to overestimate soil mois-

ture in dry conditions and underestimate soil moisture in

wet conditions compared to USCRN, resulting in rela-

tively low r2 and D values of 0.27 and 0.66, respectively

(Table 2). The scatterplot shows NARR had lower

(;0.05m3m23) and upper bounds (around 0.4m3m23)

when simulating volumetric soil moisture conditions

(Fig. 5a), which may have been caused by contrasts be-

tween modeled and actual field capacity and wilting

point at USCRN stations. It may be that the NARR grids

andUSCRNpoint locations have dissimilar capabilities of

soil moisture storage that limited the range of simulated

moisture conditions. Standardized anomalous soil condi-

tions betweenNARRandUSCRNwere somewhat better

correlated with an r2 of 0.32 andD of 0.77 (Table 3), with

no obvious threshold limitations from the scatterplot

despite some spread (Fig. 5b). While NARR-modeled

volumetric and standardized anomalous soil condi-

tions were driest in 2012, standardized anomalous soil

moisture conditions between NARR and USCRN were

much more similar than volumetric (Figs. 6a,b).

TABLE 1. NARRmonthly averaged precipitation regional mean

difference, percent difference, coefficient of determination, and

index of agreement.

Region

Mean

difference (mm)

Percent

difference (%) r2 D

National 214.9 222.0 0.81 0.91

Northeast 225.8 225.3 0.65 0.83

Southeast 222.2 221.2 0.72 0.87

Upper Midwest 219.2 229.0 0.76 0.87

Ohio Valley 221.8 221.9 0.76 0.88

South 215.5 225.4 0.83 0.90

Northern Rockies

and Great Plains

27.5 217.5 0.70 0.90

Southwest 25.6 219.8 0.59 0.86

Northwest 218.3 219.6 0.84 0.92

West 25.5 216.7 0.90 0.96
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For six of the nine regions, NARR had a wet volu-

metric soil moisture bias, with the other three having

biases near 0, from 20.01 to 0.12m3m23 (Table 2).

Volumetric biases were generally larger in the driest

portions of the country (i.e., West, Southwest, and

Northwest regions; Table 2) and when soil moisture

conditions were drier over the three years (Figs. 7a–i).

The larger volumetric biases for the drier locations/

periods are thought to be associated with the model’s

higher limit on minimal soil moisture conditions, as

shown in Fig. 5a, which results in a persistent wet bias

relative to USCRN as stations observe drier condi-

tions (Figs. 7h,i). However, standardized anomalous

soil moisture conditions, which evaluate how soil

conditions differ from the interannual mean, revealed

NARR simulated drier than observed conditions in

these western regions with the exception of the West

(Table 3). In fact, six of the nine regions had negligible

standardized anomaly differences of less than 0.1

standard deviation.

Despite the wet bias, NARRwas able to simulate drier

volumetric soil moisture in regions experiencing drought

(Fig. 7a); however, the volumetric values during drought

conditions differed considerably between USCRN and

NARR. In the South and Southeast, which experi-

enced drought during 2011, NARR and USCRN

volumetric soil conditions were driest in 2011 before

recovering in 2012 and 2013 (Figs. 7b,d). For regions

hardest hit with the 2012 drought (the Ohio Valley,

the upper Midwest, and the northern Rockies and

Great Plains), NARR was able to capture 2012 as the

driest of the three years with differing rates of re-

covery in 2013 (Figs. 7c,e,f). NARR standardized

anomalous soil moisture also captured the evolution

of drought over these regions, but with considerably

smaller offsets from observed, which indicate the

model was able to capture relative changes from the

POR mean during drought intensity over the re-

gions. However, NARR anomalous soil conditions

diverged from USCRN with a strong wet bias in the

West and Southwest regions, likely due to stronger

monsoonal activity, as noted previously in Figs. 4g

and 4i.

A station analysis of mean soil moisture over the

summer months (June–August) from 2011 to 2013 was

performed to identify spatial patterns of drought in-

tensity. Apart from an obvious wet to dry gradient

across the United States (east to west), which was per-

sistent from year to year, the spatial extent of the 2012

drought was difficult if not impossible to detect using

volumetric data, even from USCRN observations

(Figs. 8a–c). However, a drought signal over U.S. in-

terior regions was discernible from USCRN volumetric

station data when comparing individual station summer

means from year to year (Figs. 8a–c). This was less clear

for NARR (Figs. 8d–f). However, standardized soil

moisture anomalies clearly showed the spatial extent

and intensity of the 2012 drought across central regions

of the United States (Figs. 9a–f). In 2011, USCRN and

NARR standardized soil moisture anomalies showed

drier soil conditions (,20.5 standard deviation) over

Texas and the Southeast, although NARR had more

continuous and drier (,21.0 standard deviation) soil

anomalies in western Texas and southern New Mexico.

Despite similar overall spatial patterns in 2012, USCRN

had a larger area of negative standardized soil mois-

ture anomalies (,21.0 standard deviation) over

Indiana, Ohio, and parts of the upper Midwest than

NARR, indicating NARR simulated drought condi-

tions were not as severe in some locations. During the

recovery in 2013, USCRN and NARR both had stan-

dardized anomalies greater than 1.0 standard deviation

over much of the Southeast and Northeast regions.

However, USCRN had a much wider band of positive

standardized soil moisture anomalies (.0.5 standard

TABLE 3. As in Table 2, but for standardized soil moisture

anomaly.

Region Mean difference (std dev) r2 D

National 0.00 0.37 0.78

Northeast 0.08 0.16 0.65

Southeast 0.03 0.49 0.83

Upper Midwest 0.05 0.19 0.68

Ohio Valley 0.15 0.55 0.85

South 0.06 0.40 0.79

Northern Rockies

and Great Plains

20.07 0.51 0.85

Southwest 20.19 0.21 0.69

Northwest 20.11 0.45 0.82

West 0.07 0.19 0.68

TABLE 2. NARR monthly averaged 5-cm volumetric soil mois-

ture regional mean difference, coefficient of determination, and

index of agreement.

Region Mean difference (m3m23) r2 D

National 0.05 0.27 0.66

Northeast 0.00 0.04 0.47

Southeast 0.06 0.30 0.67

Upper Midwest 20.01 0.02 0.46

Ohio Valley 0.00 0.53 0.83

South 0.03 0.32 0.68

Northern Rockies

and Great Plains

0.04 0.21 0.65

Southwest 0.09 0.37 0.57

Northwest 0.11 0.42 0.63

West 0.12 0.26 0.44
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deviation) that extended into the southern Ohio Val-

ley and Northeast regions (Figs. 9c,f). These results

show that NARR was able to capture similar spatial

patterns of standardized departures during the 2012

drought as observed, but slightly underreported the

severity of the extreme conditions at some stations.

In the South and Southwest, NARR modeled drier

than observed conditions over the 2011 drought area

in contrast to underreporting extremes in the 2012

drought.

5. Discussion and conclusions

NARR modeled precipitation was consistently less

than observed at USCRN stations. The NARR bias

was detected both nationally and regionally, which

may be partially explained by different spatial scales

between the model grid (representing an area) and

USCRN stations (representing a point). However,

spatial inhomogeneity in the distribution of precipi-

tation across a model grid will diminish over monthly

time scales (Gutowski et al. 2003). In addition, the

NARR bias was more systematic in time than would be

expected if spatial inhomogeneity was the primary

factor for NARR and USCRN differences. Further

research that included a denser network of stations

monitoring precipitation also had a similar dry bias with

respect to NARR (not shown here). These results suggest

that precipitation biases found in this study are likely

more attributed to biases associated with the model,

which could include limitations in the convective param-

eterization scheme, dampened vertical motions

within the model as noted by Jones et al. (1995), or

the assimilation dataset or processes. Further in-

quiries into NARR precipitation biases using multi-

ple networks or the assimilation dataset used in

NARR may be warranted to isolate these biases

further. However, NARR precipitation for most re-

gions had similar temporal trends with respect to

USCRN and was able to capture a drought signal

with less precipitation in 2012 than was observed

despite the systematic biases.

FIG. 6. Time series of USCRN (black) and NARR (blue)

national monthly 5-cm averaged (a) volumetric soil moisture and

(b) standardized soil moisture anomaly.

FIG. 5. USCRN vs NARR monthly average (a) volumetric soil

moisture and (b) standardized soil moisture anomalies.
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For soil moisture conditions, NARR overestimated

(underestimated) moisture at the 5-cm depth for drier

(wetter) soils conditions, which was in line with earlier

comparisons studies using theNoahLSM (Fan et al. 2011;

Koster et al. 2009; Xia et al. 2015a). The soil moisture

biases were likely related to a combination of multiple

issues such as the assimilation process for precipitation,

which can negatively impact surface evaporation

(Dominguez and Kumar 2008), the choice of dominant

soil characteristics over the model grid, and or grid scale

versus point measurements. Given that the direction of

soil moisture biases varied with soil moisture condition

(dry bias during wet conditions and vice versa) and that

other studies (Xia et al. 2015a) using denser state meso-

nets found similar-sized wet soil moisture bias from

the Noah LSM used in this study, the choice of soil

characteristics in the model likely had a larger role in the

NARR bias as described by Xia et al. (2015a,b). Further

comparisons of NARR and USCRN soil moisture min-

ima and maxima from 2011 to 2013 show that soil mois-

ture extremes from NARR were not as severe as

observed (Figs. 10a,b), which supports the assertion

that the model has a wilting point and field capacities

that did not match well with USCRN stations. If similar

results are found in other soil monitoring networks,

these results suggest NARR may not be capable of

simulating extreme volumetric soil moisture conditions

and that the direction of the modeling bias will change

with extreme type (flooding vs drought), warranting

further research.

Despite the challenges of NARR to simulate soil mois-

ture extremes, standardized soil moisture anomalies were

FIG. 7. USCRN (black) and NARR (blue) monthly 5-cm averaged volumetric soil moisture (solid

lines) and standardized anomaly (dashed lines) for the (a) Northeast, (b) Southeast, (c) upper Midwest,

(d) Ohio Valley, (e) South, (f) northern Rockies and Great Plains, (g) Southwest, (h) Northwest, and

(i) West.
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well matched to USCRN, with little or no systematic bia-

ses. This was particularly true for western or other regions

where the model’s minimum soil moisture value was

greater than observed. This is not to say that there were no

disparities, but that standardized anomalies allowed for

further inquiry beyond such systematic offsets in volu-

metric conditions. For instance, it would have been difficult

to identify that simulated soil conditions were slightly drier

than observed in the western half of the United States in

2011 based solely on volumetric soil moisture output from

NARR. Likewise, detecting the reverse of these results in

the latter months of the 2013 growing season whenNARR

simulated more precipitation than observed in western

regions would have been challenging to detect. Moreover,

FIG. 8. Annual June–August (left) USCRN and (right) NARR 5-cm volumetric soil moisture average for (a),(d) 2011; (b),(e) 2012; and

(c),(f) 2013.
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the use of standardized soil anomalies allowed for a more

holistic evaluation of modeled and observed biases, which

may be greatly beneficial to identifying and diagnosing

model limitations in addition to better assessments of

modeled soil moisture conditions.

While NARR was not able to capture soil moisture

extremes in some regions, the model was able to detect

the timing of transitions from drought to recovery in the

South and Southeast regions from 2011 to 2012 and the

interior United States from 2012 to 2013 as detected at

USCRN (Bell et al. 2015). This was likely due to as-

similation of observational datasets where the Noah

LSM was forced with drying (wetting) atmospheric

conditions. In addition, the spatial structure of the 2012

FIG. 9. As in Fig. 8, but for standardized soil moisture anomaly average.
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drought was easily discernible once soil conditions were

standardized, which was true not only for modeled data,

but also for station observations. When soil conditions

are evaluated based on standardized deviations from the

mean (both modeled and observed), it was possible to

assess relative soil moisture conditions (wet or dry) with

respect to the mean or normal conditions regardless

without knowledge of local climatology, soil character-

istics, vegetation cover, and other persistent impacts

on volumetric soil moisture. These results indicate that

standardizing soil moisture anomalies allow information

from both modeled and observed soil moisture condi-

tions in monitoring–assessing hydrological extremes. In

addition, this approach may be helpful when merging

soil moisture observations frommultiple networks into a

single dataset of standardized anomalies as well as im-

proved assessments of model performance.

In conclusion, NARRvolumetric soilmoisture conditions

were biased with respect to USCRN observations of volu-

metric soil moisture. These biases were largely mitigated

when soil conditions were compared using standardized

anomalies. Despite these biases in absolute soil moisture

values, NARR was able to reasonably capture drought

patterns and intensity in both 2011 (South and Southeast

regions) and 2012 (central U.S. region). This was evident at

both national and regional scales. These results indicate that

while modeled soil conditions have notable biases similar to

Fan et al. (2011) andKoster et al. (2009),NARRwas able to

capture the evolution of soil moisture conditions over the

2012 drought, which is useful to decision-makers and others

monitoringhydrological extremesbyallowingusers to assess

if soil conditions are wetter or drier than normal with a

degree of confidence, provided the modeled data have

been standardized. In addition, standardized soil moisture

anomalies can be a more useful metric in evaluating model

strengths and weakness with respect to station observations

than volumetric soil moisture. However, further research is

necessary to determine how extensible these results are to

other numerical models (i.e., with and without data assimi-

lation) and at deeper soil moisture layers that encompass

the root zone for multiple types of hydrologic extremes

(i.e., floods, flash floods, and droughts).
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